Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

150°C amorphous silicon thin-film transistor technology for polyimide substrates

Gleskova, H. and Wagner, S. and Gašparík, V. and Kováč, P. (2001) 150°C amorphous silicon thin-film transistor technology for polyimide substrates. Journal of the Electrochemical Society, 148 (7). G370-G374. ISSN 0013-4651

[img]
Preview
PDF (Gleskova-JElectrochemSoc-2001)
Gleskova_JElectrochemSoc_2001.pdf
Final Published Version

Download (266kB) | Preview

Abstract

We have developed a 150°C technology for amorphous silicon thin-film transistors (a-Si:H TFTs) on polyimide substrates deposited by plasma enhanced chemical vapor deposition. The silicon nitride gate dielectric and the a-Si:H channel material were tailored to provide the least leakage current and midgap defect density, respectively. In addition, we conducted experiments on the TFT structure and fabrication with the aim of obtaining high electron mobility. TFTs with back-channel etch and channel-passivated structures were fabricated on glass or 51 μm thick polyimide foil. The a-Si:H TFTs have an on/off current ratio of ∼10 7 and an electron mobility of ∼0.7 cm 2/V s.