Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

Gaussian regression based on models with two stochastic processes

Leithead, W.E. and Neo, K.S. and Leith, D.J. (2005) Gaussian regression based on models with two stochastic processes. In: 16th IFAC World Congress Conference, 2005-07-04 - 2005-07-08.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

When data contains components with different characteristics and it is required to identify both, standard Gaussian regression, based on a model with a single stochastic process, is inadequate. In this paper, a novel adaptation of Gaussian regression, based on models with two stochastic processes, is presented. In both the prior and posterior joint probability distributions, the Gaussian processes for the two components are independent. The effectiveness of the revised Gaussian regression method is demonstrated by application to wind turbine time series data.