Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

The application of small angle scattering techniques to porosity characterization in carbons

Calo, J.M. and Hall, P.J. (2004) The application of small angle scattering techniques to porosity characterization in carbons. Carbon, 42 (7). pp. 1299-1304. ISSN 0008-6223

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Small angle scattering (SAS) techniques offer a number of advantages for the investigation of the nature and behavior of porous materials. In particular, with respect to carbons, the essentially non-intrusive nature of SAS means that along with the more traditional, pre- and post-treatment characterization of carbons, in principle, characterization can also be performed in situ during adsorption and activation processes. In the current communication, the application of the techniques of small angle X-ray (SAXS) and neutron (SANS) scattering is reviewed specifically with respect to porosity characterization in carbons. First, the basis of these techniques is presented. More recent applications of SAXS and SANS to carbon porosity are presented, and their relative attributes are contrasted, including the related technique of contrast matching with SANS to distinguish "closed" from "open" porosity, and its application to elucidation of pore development mechanisms. Applications of other related techniques, such as μSAXS and TGA/SAXS, to carbon characterization and porosity development are also discussed.