Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Controlled release of the fibronectin central cell binding domain from polymeric microspheres

Bouissou, C. and Potter, U. and Altroff, H. and Mardon, H.J. and Van Der Walle, C.F. (2004) Controlled release of the fibronectin central cell binding domain from polymeric microspheres. Journal of Controlled Release, 95. pp. 557-566. ISSN 0168-3659

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Non-ionic surfactants have been employed as alternatives to PVA for the emulsification–encapsulation of a conformationally labile protein (FIII9′-10) into PLGA microspheres. FIII9′-10 was encapsulated using a w/o/w double emulsification–evaporation technique and the microspheres fabricated were characterized by SEM and CLSM. The peptide backbone integrity of FIII9′-10 was assayed by SDS-PAGE and the degree of unfolding of FIII9′-10 following emulsification–encapsulation was assessed using a fibroblast cell-attachment assay. The encapsulation efficiency for FIII9′-10 was 25% when using PVA, compared to 50–60% when using Igepal CA-630 or Triton-X100, with values below for the other surfactants. FIII9′-10 released from microspheres promoted cell attachment in a concentration-dependent manner, only Igepal CA-630 and Triton X-100 maintaining near-maximal cell attachment, indicating that the conformation of the relatively unstable FIII9′ domain was preserved. All non-ionic surfactants reduced microsphere surface porosity, compared to PVA, and an increasing surface rugosity (leading to minor ‘ridges’) could be correlated with decreasing surfactant HLB. Low surface porosities did not effect the diffusion of FIII9′-10 from the microspheres' internal pores in a ‘burst release’, as may have been imagined. In summary, non-ionic surfactants should be considered over PVA for the maintenance of biological activity of conformationally labile proteins during encapsulation.