Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

An improved fibre optic strain sensor for gas tank monitoring with RF subcarrier phase and I and Q demodulation techniques

Thursby, G.J. and Dong, F. and Culshaw, B. and Massaro, G. and Glisic, B. and Inaudi, D. (2005) An improved fibre optic strain sensor for gas tank monitoring with RF subcarrier phase and I and Q demodulation techniques. In: Smart Structures and Materials 2005 Conference, 2005-03-07 - 2005-03-10.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

With increased interest in the use of compressed gas as a vehicle fuel, attention has been focussed on the safety issues surrounding the tanks used to store the fuel. Currently it is necessary to remove the tanks from the vehicle in order to inspect them, which entails a considerable cost in manpower and takes the vehicle being out of service. We have been developing a sensor scheme that can provide in situ monitoring of the tanks condition. This entails bonding optical fibre sensors to the tank and using them to measure the strains experienced by the tank during pressurisation. If the tank is significantly damaged, then the tank will expand in a distorted manner. We therefore measure the strain characteristics of a healthy tank and use them as a reference for future measurements. The method of strain measurement is the well established rf subcarrier phase detection technique, however in this application the changes in optical power caused by microbending of the fibres during pressurisation produces inaccuracies. In order to overcome this problem we use both in- phase and quadrature mixing and then take the ratio of the outputs to obtain a value of arctangent that is independent of amplitude.