Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Imidazole-derived carbenes and their elusive tetraazafulvalene dimers

Jolly, Phillip I. and Zhou, Shengze and Thomson, Douglas W. and Garnier, Jean and Parkinson, John A. and Tuttle, Tell and Murphy, John A. (2012) Imidazole-derived carbenes and their elusive tetraazafulvalene dimers. Chemical Science, 3 (5). pp. 1675-1679. ISSN 2041-6520

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Previous efforts to prepare tetraazafulvalenes derived from imidazolium salt precursors have met with little success (one anomalously favourable example is known), and this is in line with the predicted reactivity of these compounds. However, we now report the preparation of a series of these tetraazafulvalenes formed either by deprotonation of 1,3-dialkylimidazolium salts or by Birch reduction of biimidazolium salts. The tetraazafulvalenes are highly reactive; for example, they act as Super-Electron-Donors towards iodoarenes. The two most reactive examples are formed more efficiently by Birch reduction than by the deprotonation route. Nevertheless, even in cases where the deprotonation approach affords a low stationary concentration, the mixture of precursor salt and base still produces the same powerful reductive chemistry that is the hallmark of tetraazafulvalene electron donors.