Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Modeling structure effects on aggregation kinetics in colloidal dispersions

Sandkuhler, Peter and Sefcik, Jan and Lattuada, Marco and Wu, Hua and Morbidelli, Massimo (2003) Modeling structure effects on aggregation kinetics in colloidal dispersions. AIChE Journal, 49 (6). pp. 1542-1555. ISSN 0001-1541

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The time evolution of the cluster-mass distribution (CMD) during colloidal aggregation can be modeled using population balance equations, given that the matrix of the aggregation rate constant (kernel) is known. Although numerous aggregation kernels have been proposed, their validity is still a major open problem, particularly when the role of the internal structure of the aggregates is referred to. A procedure is presented for the discrimination among possible kernel expressions including the structure effect. For aggregation processes in the submicron range, information about size and structure of aggregates can be obtained by dynamic and static light-scattering measurements, for example, in terms of the average hydrodynamic (Rh) and gyration (Rg) radii. These quantities can also be calculated from the cluster-mass distribution when accounting for the aggregate structure by the fractal concept and for the angular and rotational diffusion dependence of Rh. Since Rh and Rg represent different averages of the CMD, their simultaneous fitting is a severe test for a given kernel due to its inclusion of information on the average and width of the distribution. This procedure allows differentiation among several types of kernels proposed in the literature for DLCA and RLCA based on their ability to describe experimental data.