Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Optimal geometric motion planning for a spin-stabilized spacecraft

Biggs, James and Horri, Nadjim (2012) Optimal geometric motion planning for a spin-stabilized spacecraft. Systems and Control Letters, 61 (4). pp. 609-616. ISSN 0167-6911

[img]
Preview
PDF
Biggs_JD_Pure_Optimal_geometric_motion_planning_for_spin_stabilized_spacecraft_Feb_2012.pdf
Preprint

Download (1MB)| Preview

    Abstract

    A method requiring low-computational overhead is presented which generates low-torque reference motions between arbitrary orientations for spin-stabilized spacecraft. The initial stage solves a constrained optimal control problem deriving analytical solutions for a class of smooth and feasible reference motions. Specifically, for a quadratic cost function an application of Pontryagin’s maximum principle leads to a completely integrable Hamiltonian system that is, exactly solvable in closed-form, expressed in terms of several free parameters. This is shown to reduce the complexity of a practical motion planning problem from a constrained functional optimization problem to an unconstrained parameter optimization problem. The generated reference motions are then tracked using an augmented quaternion feedback law, consisting of the sum of a proportional plus derivative term and a term to compensate nonlinear dynamics. The method is illustrated with an application to re-point a spin-stabilized agile micro-spacecraft using zero propellant. The low computational overhead of the method enhances its suitability for on-board motion generation.