Super-selective polysulfone hollow fiber membranes for gas separation: rheological assessment of the spinning solution
Gordeyev, S.A. and Lees, G.B. and Dunkin, I.R. and Shilton, S.J. (2001) Super-selective polysulfone hollow fiber membranes for gas separation: rheological assessment of the spinning solution. Polymer, 42 (9). pp. 4347-4352. ISSN 0032-3861 (http://dx.doi.org/10.1016/S0032-3861(00)00787-4)
Full text not available in this repository.Request a copyAbstract
A polysulfone spinning solution used recently to produce enhanced selectivity gas separation hollow fiber membranes was rheologically assessed using a rotational rheometer and an optical shear cell. Effects of temperature and shear rate on viscosity, power law behavior and normal force provided some clues regarding phase inversion and molecular orientation. At relatively low temperatures, phase inversion may occur in the absence of a shear field. At moderately low temperatures, phase inversion may be induced by applied shear. At higher temperatures, phase inversion is not induced by shear but rather shear induces molecular orientation. The results suggest that, unless spinning at low temperature, extrusion shear does not directly induce demixing during membrane formation but, instead, is linked indirectly to phase inversion through induced molecular orientation which, in turn, affects the subsequent dry or wet precipitation stages in spinning. This work is a step towards the construction of phase diagrams and determining their distortion in shear fields. Such knowledge, coupled with deeper insights into induced polymer molecule orientation, would enable further improvements in spinning techniques and membrane performance.
-
-
Item type: Article ID code: 37602 Dates: DateEventApril 2001PublishedSubjects: Science > Chemistry Department: Faculty of Science > Pure and Applied Chemistry
Faculty of Engineering > Chemical and Process EngineeringDepositing user: Pure Administrator Date deposited: 13 Feb 2012 12:25 Last modified: 08 Apr 2024 16:25 URI: https://strathprints.strath.ac.uk/id/eprint/37602