Technology development of 3D detectors for medical imaging
Pellegrini, G and Roy, P and Al-Ajili, A and Bates, R and Haddad, L and Horn, M and Mathieson, K and Melone, J and O'Shea, V and Smith, KM and Thayne, I and Rahman, M (2003) Technology development of 3D detectors for medical imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 504 (1-3). pp. 149-153. ISSN 0168-9002 (https://doi.org/10.1016/S0168-9002(03)00811-8)
Full text not available in this repository.Request a copyAbstract
Fabrication routes to realising ‘3D’ detectors in gallium arsenide have been investigated and their electrical characteristics measured. The geometry of the detector is hexagonal with a central anode surrounded by six cathode contacts. This geometry gives a uniform electric field with the maximum drift and depletion distance set by electrode spacings rather than detector thickness. The advantages of this structure include short collection distances, fast collection times and low depletion voltages depending on the electrode diameter and pitch chosen. These characteristics are fundamental for the application of 3D detectors in, for example, medical imaging and protein crystallography.
ORCID iDs
Pellegrini, G, Roy, P, Al-Ajili, A, Bates, R, Haddad, L, Horn, M, Mathieson, K ORCID: https://orcid.org/0000-0002-9517-8076, Melone, J, O'Shea, V, Smith, KM, Thayne, I and Rahman, M;-
-
Item type: Article ID code: 37550 Dates: DateEvent21 May 2003PublishedNotes: 3rd International Conference on New Developments in Photodetection, BEAUNE, FRANCE, JUN 17-21, 2002 Subjects: UNSPECIFIED Department: Faculty of Science > Physics > Institute of Photonics Depositing user: Pure Administrator Date deposited: 09 Feb 2012 16:30 Last modified: 11 Nov 2024 10:04 URI: https://strathprints.strath.ac.uk/id/eprint/37550