Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

The laddering principle in lithium amide chemistry: the crystal and molecular structure of the pyrrolididolithium adduct [H2C(CH2)3NLi]3·MeN(CH2CH2NMe2)2

ARMSTRONG, D R and BARR, D and CLEGG, W and Mulvey, Robert and REED, D and SNAITH, R and WADE, K (1986) The laddering principle in lithium amide chemistry: the crystal and molecular structure of the pyrrolididolithium adduct [H2C(CH2)3NLi]3·MeN(CH2CH2NMe2)2. Journal of the Chemical Society, Chemical Communications (11). pp. 869-870. ISSN 0022-4936

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

The title compound, {[H2[graphic omitted]NLi]3·PMDETA}n, (1)(PMDETA = pentamethyldiethylenetriamine), is shown to be the first example of an organonitrogen–lithium laddered structure, consisting in the solid (n= 2) of two attached (NLi)2 rings, or alternatively four (N–Li) rungs, with two terminal NLi units complexes by PMDETA, so preventing further association; cryoscopic and 7Li n.m.r. spectroscopic studies imply that extension of the ladder framework can occur in arene solutions of (1), and these results, together with those from ab initio m.o. calculations on model systems, suggest that similar compounds of type (RR′NLi·xdonor)n, but of various ladder lengths, should be preparable.