A finite element modelling for the tibia of a spinal cord injured patient
Sasagawa, K and Coupaud, S. and Gislason, Magnus Kjartan and Hatem, Q and Tanner, Elizabeth and Allan, David and Tanabe, Y (2012) A finite element modelling for the tibia of a spinal cord injured patient. In: 18th Congress of the European Society of Biomechanics, 2012-07-01 - 2012-07-04.
Microsoft Word.
Filename: Gislason_M_Pure_Modelling_of_a_FE_mesh_for_the_tibia_of_a_spinal_cord_injured_patient_9_Nov_2011.docx
Preprint Download (126kB) |
Abstract
In paraplegia of Spinal Cord Injury (SCI), bone loss can occur rapidly and extensively in the paralysed lower limbs. It was reported that some patients develop osteoporosis in the tibia and femur even within the first year of injury [Coupaud et al, 2011]. Weakening of the bones after SCI is accompanied by a substantially increased risk of fracture. It is important to predict the most likely locations of fracture at regions of weakness along the bone in SCI. There is a clinical need to understand the macro-structural behaviour of the long bones in the body in order to develop potential physical treatments to tackle this musculoskeletal disorder in SCI patients. The aim of this ongoing study is to develop a modelling tool to help clinicians to quantify changes in bone structure and fracture susceptibility resulting from bone loss in the paralysed limbs after SCI.
-
-
Item type: Conference or Workshop Item(Paper) ID code: 37292 Dates: DateEvent1 July 2012PublishedNotes: Extended Abstract Subjects: Technology > Mechanical engineering and machinery
Science > Human anatomy
Science > PhysiologyDepartment: Faculty of Engineering > Mechanical and Aerospace Engineering Depositing user: Pure Administrator Date deposited: 01 Feb 2012 15:58 Last modified: 08 Jun 2024 00:46 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/37292