Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Oxygen transport and cell viability in an annular flow bioreactor: comparison of laminar Couette and Taylor-vortex flow regimes

Curran, S.J. and Black, R.A. (2005) Oxygen transport and cell viability in an annular flow bioreactor: comparison of laminar Couette and Taylor-vortex flow regimes. Biotechnology and Bioengineering, 89 (7). pp. 766-773. ISSN 0006-3592

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Rotating wall vessel bioreactors have been proposed as a means of controlling the fluid dynamic environment during long-term culture of mammalian cells and engineered tissues. In this study, we show how the delivery of oxygen to cells in an annular flow bioreactor is enhanced by the forced convective transport afforded by Taylor vortex flows. A fiberoptic oxygen probe with negligible lag time was used to measure the dissolved oxygen concentration in real time and under carefully controlled aeration conditions. From these data, the overall mass transfer coefficients were calculated and mass transport correlations determined under laminar Couette flow conditions and discrete Taylor vortex flow regimes, including laminar, wavy, and turbulent flows. While oxygen transport in Taylor vortex flows was significantly greater, and the available oxygen exceeded that consumed by murine fibroblasts in free suspension, the proportion of cells that remained viable decreased with increasing Reynolds number (101.8 < Rei < 1018), which we attribute to the action of fluid shear stresses on the cells as opposed to any limitation in mass transport. Nevertheless, the results of this study suggest that laminar Taylor-vortex flow regimes provide an effective means of maintaining the levels of oxygen transport required for long-term cell culture.