Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Modelling the mechanisms of glucose transport through cell membrane of aspergillus niger in submerged citric acid fermennation processess

Mattey, M. (2004) Modelling the mechanisms of glucose transport through cell membrane of aspergillus niger in submerged citric acid fermennation processess. Biochemical Engineering Journal, 20 (1). pp. 7-12. ISSN 1369-703X

Full text not available in this repository.Request a copy from the Strathclyde author


Data from batch fermentations of citric acid producing Aspergillus niger cultures in shake flasks, loop and stirred tank bioreactors, were used to construct diffusion models for the transport of glucose. It was found that the mediated diffusion model does not reflect the relationship between the observed uptake rate and glucose concentration, nor for the lack of sensitivity to citrate. This is due in part of the low value of Km in relation to the actual substrate concentration, which means that the carriers are saturated until the end of the process. The membrane barriers must be strongly inhibited under the standard production conditions. Instead, the simple diffusion model fits all the observed data and it explains the relationship between the specific uptake rate and the concentration of glucose, which should not exist under carrier-saturated conditions. This may account for the overproduction or organic acids under the specific process conditions. The simple nature of this mechanism also explains the similarity of the uptake relationships from different sources, despite the use of different growing conditions.