Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Investigations into electrical-mechanical interactions within IFEP systems using a holistic simulation tool

Schuddebeurs, J. and Norman, P. and Booth, C.D. and Galloway, S.J. and Burt, G.M. and McDonald, J.R. and Apsley, J.M. and Gonzalez-Villasenor, A. and Barnes, M. and Smith, A.C. and Williamson, S. and Bhavik, B.M and Kyritsis, V and Pilidis, P. and Singh, R. (2007) Investigations into electrical-mechanical interactions within IFEP systems using a holistic simulation tool. In: All Electric Ship Conference and Exhibition, 2007-09-25 - 2007-09-26.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The Integrated Full Electric Propulsion (IFEP) concept is of increasing interest to the commercial and naval industries due to the advantages of flexibility, capability and efficiency it is believed to offer. IFEP systems exhibit tight coupling of electrical and mechanical sub-systems and disturbances are able to propagate easily between them. This leads to a particular requirement for an integrated simulation of the complete electro-mechanical system to ensure that its behaviour is clearly understood. This paper discusses some of the particular challenges of such an approach and presents the methods adopted by the authors in integrating a number of high-fidelity electrical and mechanical models to represent a complete vessel propulsion system. A case study is used to demonstrate the capabilities of the resulting integrated model in simulating the interaction of the electrical and mechanical components to a disturbance to the propulsion drive