Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

Surface transport of energetic electrons in intense picosecond laser-foil interactions

Gray, R. J. and Yuan, X. H. and Carroll, D. C. and Brenner, C. M. and Coury, M. and Quinn, M. N. and Tresca, O. and Zielbauer, B. and Aurand, B. and Bagnoud, V. and Fils, J. and Kuehl, T. and Lin, X. X. and Li, C. and Li, Y. T. and Roth, M. and Neely, D. and McKenna, P. (2011) Surface transport of energetic electrons in intense picosecond laser-foil interactions. Applied Physics Letters, 99 (17). -. ISSN 0003-6951

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The angular distribution of energetic electrons emitted from thin foil targets irradiated by intense, picosecond laser pulses is measured as a function of laser incidence angle, intensity, and polarization. Although the escaping fast electron population is found to be predominantly transported along the target surface for incidence angles >= 65 degrees, in agreement with earlier work at lower intensities, rear-surface proton acceleration measurements reveal that a significant electron current is also transported longitudinally within the target, irrespective of incident angle. These findings are of interest to many applications of laser-solid interactions, including advanced schemes for inertial fusion energy.