Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Partial discharge detection and location in transformers using UHF techniques

Judd, Martin (2012) Partial discharge detection and location in transformers using UHF techniques. In: Electromagnetic Transients in Transformer and Rotating Machine Windings. IGI Global Publishing, Hershey, Pennsylvania (USA), pp. 487-520. ISBN 9781466619210

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Ultra-high frequency (UHF) methods for detecting and locating partial discharges (PD) are well established for gas insulated equipment. This paper provides an overview of their application to power transformers, discussing practicalities, capabilities and challenges. In recent years, UHF PD detection has proved helpful to manufacturers as a tool for enhancing quality control. The technique can now form a valuable addition to the suite of on-line monitoring technologies available for power transformers. A key aspect discussed in this paper is the installation of sensors, which must have an electromagnetic `view' into the Faraday cage of the tank. Locating PD sources by time-of-flight methods in transformers requires accurate spatial resolution in three dimensions in the presence of large conducting components inside the tank that often block the line of sight between PD source and sensor. For this reason, instead of an `empty box' representation, modeling techniques are used to account for the internal structure of the transformer so that observed time differences among PD signals received at different sensors can be interpreted more realistically. The PD location procedure is illustrated by means of practical results, which indicate that PD sources can be located typically to within 0.3 m in a power transformer.