Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Krypton gas as a novel applied tracer of groundwater flow in a fissured sandstone aquifer

McNeill, G.W. and Yang, Y.S. and Elliot, T. and Kalin, R M (2001) Krypton gas as a novel applied tracer of groundwater flow in a fissured sandstone aquifer. In: New approaches characterizing groundwater flow. A A Balkema, pp. 143-148. ISBN 902651848X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Dissolved krypton gas (Kr) has been used as a novel, applied and "environmentally-friendly" groundwater tracer in the fissured Sherwood Sandstone aquifer at Queen's University Belfast, Northern Ireland. The tracer test involved a single-well slug injection and withdrawal (so-called "push-pull") technique, to study the dual-permeability nature of the aquifer. Analytical modelling of the tracer transport demonstrates that the shape of the Kr breakthrough curve is a result of two processes: relatively rapid dispersion of the tracer through rock fissures and slower diffusion into the sandstone pore spaces. Characterisation of this dual-permeability nature is important in assessing movement and fate of groundwater contaminants in the aquifer.