Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

UHF white space network for rural smart grid communications

Brew, Malcolm Ronald and Darbari, Faisal and Crockett, Louise Helen and Waddell, Mark and Fitch, Michael and Weiss, Stephan and Stewart, Robert (2011) UHF white space network for rural smart grid communications. In: 2nd IEEE Conference on Smart Grid Communications, 2011-10-17 - 2011-10-21.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We present a white space communications test bed running in the Scottish Highlands and Islands, and discuss its feasibility for smart grid communications. The network aims to serve communities that have great potential for distributed generation of electricity, by means of wind, water, and tidal power. However, smart grid applications such as remote meter reading and load balancing are impaired by the scarcity or lack of communications infrastructure in remote rural areas such as the Scottish Highlands and Islands. We argue that the proposed system is based on a network of energy self-sufficient radio relay nodes that make it a robust and independent medium to support smart grid communications in rural settings.