Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

UHF white space network for rural smart grid communications

Brew, Malcolm Ronald and Darbari, Faisal and Crockett, Louise Helen and Waddell, Mark and Fitch, Michael and Weiss, Stephan and Stewart, Robert (2011) UHF white space network for rural smart grid communications. In: 2nd IEEE Conference on Smart Grid Communications, 2011-10-17 - 2011-10-21.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We present a white space communications test bed running in the Scottish Highlands and Islands, and discuss its feasibility for smart grid communications. The network aims to serve communities that have great potential for distributed generation of electricity, by means of wind, water, and tidal power. However, smart grid applications such as remote meter reading and load balancing are impaired by the scarcity or lack of communications infrastructure in remote rural areas such as the Scottish Highlands and Islands. We argue that the proposed system is based on a network of energy self-sufficient radio relay nodes that make it a robust and independent medium to support smart grid communications in rural settings.