Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

Diode laser induced fluorescence for gas-phase diagnostics

Burns, Iain and Kaminski, C.F. (2011) Diode laser induced fluorescence for gas-phase diagnostics. Zeitschrift für Physikalische Chemie, 225 (11-12). pp. 1343-1368. ISSN 0942-9352

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We highlight the capabilities and potential of diode laser induced fluorescence for measurements in gas-phase reacting flows. Many applications of diode lasers in practical sensing are based on absorption spectroscopy. Fluorescence-based diagnostics possess similar advantages in terms of practicality and implementation-cost but additionally are capable of achieving excellent spatial resolution. Diode laser fluorescence instruments have been employed for high-sensitivity trace gas monitoring in applications ranging from plasma physics to atmospheric chemistry. This article begins by describing the UV-visible diode laser technology used to perform fluorescence. The principles of diode laser induced fluorescence are then reviewed and a comparison is made with absorption spectroscopy. Examples are given of concentration measurements of both atomic and molecular trace gases. Recent work on using diode laser induced atomic fluorescence for precision measurements of flame temperature is also reviewed. We conclude by a discussion of future opportunities for diode laser fluorescence spectroscopy drawing attention to interesting potential target species as well as novel application areas, such as monitoring of synthesis processes for nanomaterials. Read More: http://www.oldenbourg-link.com/doi/abs/10.1524/zpch.2011.0182