Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Diode laser induced fluorescence for gas-phase diagnostics

Burns, Iain and Kaminski, C.F. (2011) Diode laser induced fluorescence for gas-phase diagnostics. Zeitschrift für Physikalische Chemie, 225 (11-12). pp. 1343-1368. ISSN 0942-9352

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

We highlight the capabilities and potential of diode laser induced fluorescence for measurements in gas-phase reacting flows. Many applications of diode lasers in practical sensing are based on absorption spectroscopy. Fluorescence-based diagnostics possess similar advantages in terms of practicality and implementation-cost but additionally are capable of achieving excellent spatial resolution. Diode laser fluorescence instruments have been employed for high-sensitivity trace gas monitoring in applications ranging from plasma physics to atmospheric chemistry. This article begins by describing the UV-visible diode laser technology used to perform fluorescence. The principles of diode laser induced fluorescence are then reviewed and a comparison is made with absorption spectroscopy. Examples are given of concentration measurements of both atomic and molecular trace gases. Recent work on using diode laser induced atomic fluorescence for precision measurements of flame temperature is also reviewed. We conclude by a discussion of future opportunities for diode laser fluorescence spectroscopy drawing attention to interesting potential target species as well as novel application areas, such as monitoring of synthesis processes for nanomaterials. Read More: http://www.oldenbourg-link.com/doi/abs/10.1524/zpch.2011.0182