Diode laser induced fluorescence for gas-phase diagnostics
Burns, Iain and Kaminski, C.F. (2011) Diode laser induced fluorescence for gas-phase diagnostics. Zeitschrift für Physikalische Chemie, 225 (11-12). pp. 1343-1368. ISSN 0942-9352 (https://doi.org/10.1524/zpch.2011.0182)
Full text not available in this repository.Request a copyAbstract
We highlight the capabilities and potential of diode laser induced fluorescence for measurements in gas-phase reacting flows. Many applications of diode lasers in practical sensing are based on absorption spectroscopy. Fluorescence-based diagnostics possess similar advantages in terms of practicality and implementation-cost but additionally are capable of achieving excellent spatial resolution. Diode laser fluorescence instruments have been employed for high-sensitivity trace gas monitoring in applications ranging from plasma physics to atmospheric chemistry. This article begins by describing the UV-visible diode laser technology used to perform fluorescence. The principles of diode laser induced fluorescence are then reviewed and a comparison is made with absorption spectroscopy. Examples are given of concentration measurements of both atomic and molecular trace gases. Recent work on using diode laser induced atomic fluorescence for precision measurements of flame temperature is also reviewed. We conclude by a discussion of future opportunities for diode laser fluorescence spectroscopy drawing attention to interesting potential target species as well as novel application areas, such as monitoring of synthesis processes for nanomaterials. Read More: http://www.oldenbourg-link.com/doi/abs/10.1524/zpch.2011.0182
-
-
Item type: Article ID code: 36478 Dates: DateEventDecember 2011PublishedSubjects: Technology > Chemical engineering Department: Faculty of Engineering > Chemical and Process Engineering
Technology and Innovation Centre > Continuous Manufacturing and Crystallisation (CMAC)Depositing user: Pure Administrator Date deposited: 19 Dec 2011 11:46 Last modified: 11 Nov 2024 10:02 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/36478