Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Design, construction and operation of flux measurement systems using the conditional sampling technique

Beverland, I J and Oneill, D H and Scott, S L and Moncrieff, J B (1996) Design, construction and operation of flux measurement systems using the conditional sampling technique. Atmospheric Environment, 30 (18). pp. 3209-3220. ISSN 1352-2310

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

The design, construction and field operation of computer-based systems for the measurement of trace gas fluxes using the conditional sampling technique are described. A simple system which sampled air into sampling bags was used to measure CH4 and N2O fluxes from peatland and agricultural land, respectively. The system was subsequently automated by making real-time measurements of the gas mixing ratios in the sampling lines thus providing continuous measurements for periods of up to several days. Minor modifications enabled measurement of total hydrocarbons, CO2 and non-methane hydrocarbon fluxes from a forest ecosystem. Intercomparison of conditional sampling with other techniques (eddy covariance, gradient and aircraft boundary layer budget) was encouraging with good agreement between flux measurements of CH4, CO2, N2O and sensible heat. The system has been developed in a sufficiently simple and robust manner to enable extended field measurements. A number of theoretical problems remain including the absolute accuracy of the gas analysis procedures and real-time coordinate rotation procedures to deal with non-uniform terrain.