Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Real-time measurement and interpretation of the conductivity and pH of precipitation samples

Beverland, I J and Heal, M R and Crowther, J M and Srinivas, M S N (1997) Real-time measurement and interpretation of the conductivity and pH of precipitation samples. Water, Air, and Soil Pollution, 98 (3-4). pp. 325-344.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A microprocessor-based acid rain monitor was used to make real-time measurements of conductivity and pH of rainwater within individual storms. The automated measurements were compared with laboratory analyses of a subset of the samples taken. The laboratory measurements tended to overestimate the pH because of temperature induced changes in dissociation and Henry's Law constants affecting ionic compounds in the rainwater. The measurement artefact due to these effects may result in average hydrogen ion concentrations being underestimated by approximately 10 to 15% at UK sites. The greatest systematic discrepancies would be anticipated at highly polluted sites and during low temperature acidic episodes. The concept of a rainwater acid fraction was investigated and found to be useful for quality control and interpretative purposes. The field measurement of conductivity of low ionic strength samples was slightly lower than the corresponding laboratory measurement, possibly caused by limited resolution of the conductivity probe or dissolution of fine particulate material.