Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Pulse propagation effects in a cyclotron resonance maser amplifier

Aitken, P and McNeil, B W J and Robb, G R M and Phelps, A D R (1999) Pulse propagation effects in a cyclotron resonance maser amplifier. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 59 (1). pp. 1152-1166. ISSN 1063-651X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

An analysis is presented of a cyclotron resonance maser amplifier operating with electron pulses. The electrons are resonant at two frequencies of the same waveguide mode. We consider both a single resonant frequency interaction and also a coupled two resonant frequency interaction. It is shown that, in general, the interaction with both resonant frequencies must be taken into account. The analysis includes propagation effects due to the difference between the axial velocity of the electrons and the group velocities of the radiation fields. Both linear and numerical solutions to the equations are given, and superradiant emission is demonstrated where the radiated power scales as the square of the electron pulse current. Two methods of low-frequency suppression are presented allowing the high-frequency emission to dominate. These results may have important consequences for the generation of short pulses of high-frequency, high-power microwave radiation. [S1063-651X(99)01001-6].