Theory and design of a free-electron maser with two-dimensional feedback driven by a sheet electron beam
Ginzburg, N S and Peskov, N Y and Sergeev, A S and Phelps, A D R and Konoplev, I V and Robb, G R M and Cross, A W and Arzhannikov, A V and Sinitsky, S L (1999) Theory and design of a free-electron maser with two-dimensional feedback driven by a sheet electron beam. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 60 (1). pp. 935-945. ISSN 2470-0053 (https://doi.org/10.1103/PhysRevE.60.935)
Full text not available in this repository.Request a copyAbstract
The use of two-dimensional Bragg resonators of planar geometry, realizing two-dimensional (2D) distributed feedback, is considered as a method of producing spatially coherent radiation from a large sheet electron beam. The spectrum of eigenmodes is found for a 2D Bragg resonator when the sides of the resonator are open and also when they are closed. The higher selectivity of the open resonator in comparison with the closed one is shown. A time-domain analysis of the excitation of an open 2D Bragg resonator by a sheet electron beam demonstrates that a single-mode steady-state oscillation regime may be obtained for a sheet electron beam of width 100-1000 wavelengths. Nevertheless, for a free-electron maser (FEM) with a closed 2D Bragg resonator, a steady-state regime can also be realized if the beam width does not exceed 50-100 wavelengths. The parameters for a FEM with a 2D planar Bragg resonator driven by a sheet electron beam based on the U-2 accelerator (INP RAS, Novosibirsk) are estimated and the project is described. [S1063-651X(99)04207-5].
ORCID iDs
Ginzburg, N S, Peskov, N Y, Sergeev, A S, Phelps, A D R ORCID: https://orcid.org/0000-0002-1100-1012, Konoplev, I V, Robb, G R M ORCID: https://orcid.org/0000-0002-3004-5926, Cross, A W ORCID: https://orcid.org/0000-0001-7672-1283, Arzhannikov, A V and Sinitsky, S L;-
-
Item type: Article ID code: 36132 Dates: DateEventJuly 1999PublishedSubjects: Science > Physics > Plasma physics. Ionized gases Department: Faculty of Science > Physics Depositing user: Pure Administrator Date deposited: 28 Nov 2011 11:03 Last modified: 05 Jan 2025 03:26 URI: https://strathprints.strath.ac.uk/id/eprint/36132