Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Application of electric spark generated high power ultrasound to recover ferrous and non ferrous metals from slag waste

Wilson, M.P. and Balmer, L. and Given, M.J. and MacGregor, S.J. and Mackersie, J.W. and Timoshkin, I. (2006) Application of electric spark generated high power ultrasound to recover ferrous and non ferrous metals from slag waste. Minerals Engineering, 19 (5). pp. 491-499. ISSN 0892-6875

Full text not available in this repository.Request a copy from the Strathclyde author


On a worldwide basis there exist large stocks of by-products from the production of ferrous and non-ferrous metals. For example, in Scandinavia there is a site which currently has 60 000 tons of stainless steel trapped in slag waste. Even at current market prices this is a valuable resource. However, current technological approaches, such as ball milling, are uneconomic. High power ultrasound (HPU) is a novel approach to this problem to allow recovery of the stainless steel and a recycling path for the silicate slag as a building material. At the University of Strathclyde, pulsed power (the compression of electrical energy with time) has been used to generate HPU shock waves from spark discharges in water. Trials using a prototype HPU system have demonstrated that stainless steel metal can be separated from the slag waste by-product rapidly and with low power consumption. Glass may also be comminuted for recycling using the HPU system. The results of the trials are presented and proposed methods for industrial scale-up are discussed.