Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Comparison of linear and nonlinear kriging methods for characterization and interpolation of soil data

Asa, Eric and Saafi, Mohamed and Membah, Joseph and Billa, Arun (2012) Comparison of linear and nonlinear kriging methods for characterization and interpolation of soil data. Journal of Computing in Civil Engineering, 26 (1). ISSN 0887-3801

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Characterization and analysis of large quantities of existing soil data represent highly complicated tasks due to the spatial correlation, uncertainty and complexity of the processes underlying soil formation. In this work, three linear kriging (simple kriging, ordinary kriging and universal kriging) and three nonlinear kriging (indicator kriging, probability kriging and disjunctive kriging) algorithms are compared to discover which is best suited for the characterization and interpolation of soil data for applications in transportation projects. A spherical model is employed as the experimental variogram to aid the spatial interpolation and cross-validation. The kriged data is subjected to leave-one-out cross-validation. The data used are in both vector and raster format. Statistical measures of correctness (mean prediction error, root-mean-square error, standardized root-mean-square error, average standard error) from the cross-validation are used to compare the kriging algorithms. Using indicator and probability kriging with the vector data set yielded the best results.