Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Discrete fragmentation with mass loss

Smith, Ann Louise and Lamb, Wilson and Langer, Matthias and McBride, Adam (2012) Discrete fragmentation with mass loss. Journal of Evolution Equations, 12 (1). pp. 181-201. ISSN 1424-3199

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We examine an infinite system of ordinary differential equations that models a discrete fragmentation process in which mass loss can occur. The problem is treated as an abstract Cauchy problem, posed in an appropriate Banach space. Perturbation techniques from the theory of semigroups of operators are used to establish the existence and uniqueness of physically meaningful solutions under minimal restrictions on the fragmentation rates. In one particular case an explicit formula for the associated semigroup is obtained and this enables additional properties, such as compactness of the resolvent and analyticity of the semigroup, to be deduced. Another explicit solution of this particular fragmentation problem, in which mass is apparently created from a zero-mass initial state, is also investigated, and the theory of Sobolev towers is used to prove that the solution actually emanates from an initial infinite cluster of unit mass.