3D wavelet treatment of solvated bipolaron and polaron
Chuev, G N and Fedorov, M V and Luo, H J and Kolb, D and Timoshenko, E G (2005) 3D wavelet treatment of solvated bipolaron and polaron. Journal of Theoretical and Computational Chemistry, 4 (3). pp. 751-767. ISSN 0219-6336 (https://doi.org/10.1142/S0219633605001787)
Full text not available in this repository.Request a copyAbstract
Three-dimensional discrete tensor wavelets are applied to calculate wave functions of excess electrons solvated in polar liquids. Starting from the Hartree-Fock approximation for the electron wave functions and from the linear response to the solute charge for the solvent, we have derived the approximate free energy functional for the excess electrons. The orthogonal Coifman basis set is used to minimize the free energy functional and to approximate the electron wave functions. The scheme is applied to the calculation of the properties of the solvated electron and the singlet bipolaron formation. The obtained results indicate that the proposed algorithm is fast and rather efficient for calculating the electronic structure of the solvated molecular solutes.
-
-
Item type: Article ID code: 35685 Dates: DateEventSeptember 2005PublishedSubjects: Science > Physics Department: Faculty of Science > Physics Depositing user: Pure Administrator Date deposited: 08 Nov 2011 15:35 Last modified: 11 Nov 2024 10:00 URI: https://strathprints.strath.ac.uk/id/eprint/35685