Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Lipase-catalysed acylation of starch and determination of the degree of substitution by methanolysis and GC

Alissandratos, Apostolos and Baudendistel, Nina and Flitsch, Sabine L. and Hauer, Bernhard and Halling, Peter J. (2010) Lipase-catalysed acylation of starch and determination of the degree of substitution by methanolysis and GC. BMC Biotechnology, 10.

[img]
Preview
Text (Alissandratos-etal-BMC-B-2010-Lipase-catalysed-acylation-of-starch)
Alissandratos_etal_BMC_B_2010_Lipase_catalysed_acylation_of_starch.pdf
Final Published Version
License: Creative Commons Attribution 2.5 logo

Download (573kB) | Preview

Abstract

Background: Natural polysaccharides such as starch are becoming increasingly interesting as renewable starting materials for the synthesis of biodegradable polymers using chemical or enzymatic methods. Given the complexity of polysaccharides, the analysis of reaction products is challenging. Results: Esterification of starch with fatty acids has traditionally been monitored by saponification and back-titration, but in our experience this method is unreliable. Here we report a novel GC-based method for the fast and reliable quantitative determination of esterification. The method was used to monitor the enzymatic esterification of different starches with decanoic acid, using lipase from Thermomyces lanuginosus. The reaction showed a pronounced optimal water content of 1.25 mL per g starch, where a degree of substitution (DS) of 0.018 was obtained. Incomplete gelatinization probably accounts for lower conversion with less water. Conclusions: Lipase-catalysed esterification of starch is feasible in aqueous gel systems, but attention to analytical methods is important to obtain correct DS values.