Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

A direct derivative method for estimating kinetic parameters of biological networks

Jia, Jianfang and Yue, Hong (2011) A direct derivative method for estimating kinetic parameters of biological networks. In: 30th Chinese Control Conference, 2011-07-22 - 2011-07-24.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Challenged by strong nonlinearity of cellular network models, large uncertainty in model parameters, and noisy experimental data, a new parameter estimation algorithm, direct derivative method (DDM), is presented in which the measurement data are firstly fitted with smoothing splines, and then the first-order derivative of state variables are evaluated and substituted into the model. Thus, a dynamic optimization problem is converted into a linear or nonlinear regression problem. There is no need to solve ordinary differential equations of the system models iteratively, the computational complexity is therefore reduced to a large extent. Taking the IκBα-NF-κB signal transduction pathways as an example, unknown parameters are estimated effectively using the proposed DDM algorithm, and various factors that affect the results are investigated.