Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Clustered integrin α5β1 ligand displays model fibronectin-mediated adhesion of human endometrial stromal cells

Li, Zhaohui and Kreiner, Michaela and van der Walle, Christopher F and Mardon, Helen J (2011) Clustered integrin α5β1 ligand displays model fibronectin-mediated adhesion of human endometrial stromal cells. Biochemical and Biophysical Research Communications, 407 (4). pp. 777-782.

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Progress towards endometrial tissue engineering for modelling endometrial diseases and infertility is frustrated by the inability to mimic the fibronectin (FN) extracellular matrix required by human endometrial stromal cells (EnSCs). Here we show that this is because of the requirement to present integrin α5β1 (the FN receptor) ligands in specifically oriented, polyvalent displays; by engineering controlled self-assembly of the 9th-10th type III FN domain pair (FIII9-10, the minimal integrin α5β1 ligand) immobilised in a specific orientation to cell culture surfaces. The fraction of adherent EnSCs seen to spread increased significantly for the multimeric ligand surfaces in the order: tetramer>trimer>dimer>monomer. The extent of EnSC spread morphology also increased in the same order, with the tetrameric ligand supporting a morphology most similar to that supported by FN. Our data suggest that only higher-order multimers of FIII9-10 will fully promote cell spreading mediated through integrin α5β1 binding.