Integrated self-assembling and holding technique applied to a 3-D MEMS variable optical attenuator
Li, L. and Zawadzka, Justyna and Uttamchandani, D.G. (2004) Integrated self-assembling and holding technique applied to a 3-D MEMS variable optical attenuator. Journal of Microelectromechanical Systems, 13 (1). pp. 83-90. ISSN 1057-7157 (http://dx.doi.org/10.1109/JMEMS.2003.823222)
Full text not available in this repository.Request a copyAbstract
The application of polysilicon/gold bimorph stress-induced curved beams for three-dimensional self-assembly of MEMS devices is reported. The mechanical principle behind this self-assembling procedure is presented and comparison with current assembling methods are made. With this self-assembling technique, no postprocessing is required. A free-space optical MEMS device in the form of a variable optical attenuator (VOA) has been fabricated and self-assembled using this technique. The angular elevation of the self-assembled structures and the attenuation characteristics of the optical MEMS device are reported. The VOA has a measured dynamic attenuation range of 44 dB at 1.55 /spl mu/m optical wavelength. The bending of the bimorph beams is also temperature controllable, and the thermal behavior of the beams is also reported.
ORCID iDs
Li, L., Zawadzka, Justyna and Uttamchandani, D.G. ORCID: https://orcid.org/0000-0002-2362-4874;-
-
Item type: Article ID code: 3512 Dates: DateEvent2004PublishedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering
Faculty of Science > PhysicsDepositing user: Strathprints Administrator Date deposited: 18 Jun 2007 Last modified: 03 Jan 2025 01:29 URI: https://strathprints.strath.ac.uk/id/eprint/3512