Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Optimal filters with multiresolution apertures

Marshall, Stephen and Green, Alan C. and Dougherty, Edward R. and Greenhalgh, David (2004) Optimal filters with multiresolution apertures. Journal of Mathematical Imaging and Vision, 20 (3). pp. 237-250. ISSN 0924-9907

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

This paper presents an extension to the recently introduced class of nonlinear filters known as Aperture Filters. By taking a multiresolution approach, it can be shown that more accurate filtering results (in terms of mean absolute error) may be achieved compared to the standard aperture filter given the same size of training set. Most optimisation techniques for nonlinear filters require a knowledge of the conditional probabilities of the output. These probabilities are estimated from observations of a representative training set. As the size of the training set is related to the number of input combinations of the filter, it increases very rapidly as the number of input variables increases. It can be impossibly large for all but the simplest binary filters. In order to design nonlinear filters of practical use, it is necessary to limit the size of the search space i.e. the number of possible filters (and hence the training set size) by the application of filter constraints. Filter constraints take several different forms, the most general of which is the window constraint where the output filter value is estimated from only a limited range of input variables.