Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Subanaesthetic ketamine treatment alters prefrontal cortex connectivity with thalamus and ascending subcortical systems

Dawson, Neil and Morris, B.J. and Pratt, Judith (2013) Subanaesthetic ketamine treatment alters prefrontal cortex connectivity with thalamus and ascending subcortical systems. Schizophrenia Bulletin, 39 (2). pp. 366-377.

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Acute treatment with subanaesthetic doses of NMDA receptor antagonists, such as ketamine, provides a translational model with relevance to many of the symptoms of schizophrenia. Previous studies have focused specifically on the prefrontal cortex (PFC) because this region is implicated in many of the functional deficits associated with this disorder and shows reduced activity (hypofrontality) in schizophrenia patients. Chronic NMDA antagonist treatment in rodents can also induce hypofrontality, although paradoxically acute NMDA receptor antagonist administration induces metabolic hyperfrontality. In this study, we use 2-deoxyglucose imaging data in mice to characterize acute ketamine-induced alterations in regional functional connectivity, a deeper analysis of the consequences of acute NMDA receptor hypofunction. We show that acute ketamine treatment increases PFC metabolic activity while reducing metabolic activity in the dorsal reticular thalamic nucleus (dRT). This is associated with abnormal functional connectivity between the PFC and multiple thalamic nuclei, including the dRT, mediodorsal (MDthal), and anteroventral (AVthal) thalamus. In addition, we show that acute NMDA receptor blockade alters the functional connectivity of the serotonergic (dorsal raphe [DR]), noradrenergic (locus coeruleus [LC]), and cholinergic (vertical limb of the diagonal band of broca [VDB]) systems. Together with other emerging data, these findings suggest that the reticular nucleus of the thalamus, along with the diffusely projecting subcortical aminergic/cholinergic systems, represent a primary site of action for ketamine in reproducing the diverse symptoms of schizophrenia. Our results also demonstrate the added scientific insight gained by characterizing the functional connectivity of discrete brain regions from brain imaging data gained in a preclinical context.