Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Antibiotic resistance gene abundances correlate with metal and geochemical conditions in Scottish soils

Knapp, Charles W. and Mccluskey, Seanin M. and Singh, Brajesh K. and Campbell, Colin D. and Hudson, Gordon and Graham, David W. (2011) Antibiotic resistance gene abundances correlate with metal and geochemical conditions in Scottish soils. PLoS One, 6 (11). pp. 1-6. ISSN 1932-6203

[img]
Preview
PDF
2011_Knapp_PLOS_Antibiotic_resist.pdf - Final Published Version

Download (319kB) | Preview

Abstract

The vast majority of antibiotic resistant genes (ARG) acquired by human pathogens have originated from the natural environment. Therefore, understanding factors that influence intrinsic levels of ARG in the environment could be epidemiologically significant. The selection for metal resistance often promotes AR in exposed organisms; however, the relationship between metal levels in nature and the intrinsic presence of ARG has not been fully assessed. Here, we quantified, using qPCR, the abundance of eleven ARG and compared their levels with geochemical conditions in randomly selected soils from a Scottish archive. Many ARG positively correlated with soil copper levels, with approximately half being highly significant (p<0.05); whereas chromium, nickel, lead, and iron also significantly correlated with specific ARG. Results show that geochemical metal conditions innately influence the potential for AR in soil. We suggest soil geochemical data might be used to estimate baseline gene presence on local, regional and global scales within epidemiological risk studies related to AR transmission from the environment.