Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Parameterised notions of computation

Atkey, Robert (2009) Parameterised notions of computation. Journal of Functional Programming, 19 (3-4). pp. 335-376. ISSN 0956-7968

[img]
Preview
PDF
paramnotions_jfp.pdf
Accepted Author Manuscript

Download (418kB) | Preview

Abstract

Moggi’s Computational Monads and Power et al’s equivalent notion of Freyd category have captured a large range of computational effects present in programming languages. Examples include non-termination, non-determinism, exceptions, continuations, side-effects and input/output. We present generalisations of both computational monads and Freyd categories, which we call parameterised monads and parameterised Freyd categories, that also capture computational effects with parameters. Examples of such are composable continuations, side-effects where the type of the state varies and input/output where the range of inputs and outputs varies. By also considering structured parameterisation, we extend the range of effects to cover separated side-effects and multiple independent streams of I/O. We also present two typed λ-calculi that soundly and completely model our categorical definitions — with and without symmetric monoidal parameterisation — and act as prototypical languages with parameterised effects.