Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Partition and composition matrices

Claesson, Anders and Dukes, Mark and Kubitzke, Martina (2011) Partition and composition matrices. Journal of Combinatorial Theory Series A, 118 (5). pp. 1624-1637.

Full text not available in this repository. Request a copy from the Strathclyde author


This paper introduces two matrix analogues for set partitions. A composition matrix on a finite set X is an upper triangular matrix whose entries partition X, and for which there are no rows or columns containing only empty sets. A partition matrix is a composition matrix in which an order is placed on where entries may appear relative to one-another. We show that partition matrices are in one-to-one correspondence with inversion tables. Non-decreasing inversion tables are shown to correspond to partition matrices with a row ordering relation. Partition matrices which are s-diagonal are classified in terms of inversion tables. Bidiagonal partition matrices are enumerated using the transfer-matrix method and are equinumerous with permutations which are sortable by two pop-stacks in parallel. We show that composition matrices on X are in one-to-one correspondence with (2+2)-free posets on X. Also, composition matrices whose rows satisfy a column-ordering relation are shown to be in one-to-one correspondence with parking functions. Finally, we show that pairs of ascent sequences and permutations are in one-to-one correspondence with (2+2)-free posets whose elements are the cycles of a permutation, and use this relation to give an expression for the number of (2+2)-free posets on {1,…,n}.