Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

He and Ne as tracers of natural CO2 migration up a fault from a deep reservoir

Gilfillan, Stuart M V and Wilkinson, Mark and Haszeldine, R. Stuart and Shipton, Zoe K. and Nelson, Steven T and Poreda, Robert J. (2011) He and Ne as tracers of natural CO2 migration up a fault from a deep reservoir. International Journal of Greenhouse Gas Control, 5 (6). 1507–1516. ISSN 1750-5836

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Capture and geological storage of CO2 is emerging as an attractive means of economically abating anthropogenic CO2 emissions from point sources. However, for the technology to be widely deployed it is essential that a reliable means to assess a site for both storage performance and regulation compliance exists. Hence, the ability to identify the origin of any CO2 seepage measured at the near-surface and ground surface and determine if it originates from a deep storage site or a different source is critical. As an analogue for post-emplacement seepage, here we examine natural CO2 rich springs and groundwater wells in the vicinity of the St. Johns Dome CO2 reservoir located on the border of Mid-Arizona/New Mexico, USA. Extensive travertine deposits in the region document a long history of migration of CO2 rich fluids to the surface. The presence of CO2 rich fluids today are indicated by high levels of HCO3− in surface spring and groundwater well waters. We document measurements of dissolved noble gases and carbon isotopes from these springs and wells. We show that a component of the He fingerprint measured in gaseous CO2 sampled in the deep reservoir, can be traced along a fault plane to occur in waters from both groundwater wells and the majority of springs emerging at the surface above the reservoir. Our results show for the first time that CO2 can be fingerprinted from source to surface using noble gases and illustrates that this technique could be used to identify dissolved CO2 migration from engineered storage sites.