The role of CN and CO ligands in the vibrational relaxation dynamics of model compounds of the [FeFe]-hydrogenase enzyme
Kaziannis, Spyridon and Wright, Joseph A. and Candelaresi, Marco and Kania, Rafal and Greetham, Gregory M. and Parker, Anthony W. and Pickett, Christopher J. and Hunt, Neil T. (2011) The role of CN and CO ligands in the vibrational relaxation dynamics of model compounds of the [FeFe]-hydrogenase enzyme. Physical Chemistry Chemical Physics, 13 (21). pp. 10295-10305. ISSN 1463-9084 (https://doi.org/10.1039/c1cp20589g)
Full text not available in this repository.Request a copyAbstract
The vibrational dynamics of (mu-propanedithiolate)Fe-2(CO)(4)(CN)(2)(2-), a model compound of the active site of the [FeFe]-hydrogenase enzyme, have been examined via ultrafast 2D-IR spectroscopy. The results indicate that the vibrational coupling between the stretching modes of the CO and CN ligands is small and restricted to certain modes but the slow growth of off-diagonal peaks is assigned to population transfer processes occurring between these modes on timescales of 30-40 ps. Analysis of the dynamics in concert with anharmonic density functional theory simulations shows that the presence of CN ligands alters the vibrational relaxation dynamics of the CO modes in comparison to all-carbonyl model systems and suggests that the presence of these ligands in the enzyme may be an important feature in terms of directing the vibrational relaxation mechanism.
ORCID iDs
Kaziannis, Spyridon, Wright, Joseph A., Candelaresi, Marco, Kania, Rafal, Greetham, Gregory M., Parker, Anthony W., Pickett, Christopher J. and Hunt, Neil T. ORCID: https://orcid.org/0000-0001-7400-5152;-
-
Item type: Article ID code: 34267 Dates: DateEvent2011Published3 May 2011Published OnlineSubjects: Science > Chemistry > Physical and theoretical chemistry Department: Faculty of Science > Physics
Technology and Innovation Centre > BionanotechnologyDepositing user: Pure Administrator Date deposited: 05 Oct 2011 18:16 Last modified: 11 Nov 2024 09:52 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/34267