Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Detecting execution failures using learned action models

Fox, Maria and Gough, Jonathan and Long, Derek (2007) Detecting execution failures using learned action models. In: Proceedings of AAAI 2007. Association for the Advancement of Artificial Intelligence, Menlo Park, CA, pp. 968-973. ISBN 9781577353232

[img]
Preview
Text (strathprints003424)
strathprints003424.pdf
Accepted Author Manuscript

Download (499kB) | Preview

Abstract

Planners reason with abstracted models of the behaviours they use to construct plans. When plans are turned into the instructions that drive an executive, the real behaviours interacting with the unpredictable uncertainties of the environment can lead to failure. One of the challenges for intelligent autonomy is to recognise when the actual execution of a behaviour has diverged so far from the expected behaviour that it can be considered to be a failure. In this paper we present an approach by which a trace of the execution of a behaviour is monitored by tracking its most likely explanation through a learned model of how the behaviour is normally executed. In this way, possible failures are identified as deviations from common patterns of the execution of the behaviour. We perform an experiment in which we inject errors into the behaviour of a robot performing a particular task, and explore how well a learned model of the task can detect where these errors occur.