Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Rank-driven Markov processes

Grinfeld, Michael and Knight, Philip and Wade, Andrew (2012) Rank-driven Markov processes. Journal of Statistical Physics, 146 (2). pp. 378-407. ISSN 0022-4715

[img] Other (Rank-Driven Markov Processes)
1106.4194v1
Preprint
License: Unspecified

Download (879kB)

Abstract

We study a class of Markovian systems of N elements taking values in [0,1] that evolve in discrete time t via randomized replacement rules based on the ranks of the elements. These rank-driven processes are inspired by variants of the Bak–Sneppen model of evolution, in which the system represents an evolutionary ‘fitness landscape’ and which is famous as a simple model displaying self-organized criticality. Our main results are concerned with long-time large-N asymptotics for the general model in which, at each time step, K randomly chosen elements are discarded and replaced by independent U[0,1] variables, where the ranks of the elements to be replaced are chosen, independently at each time step, according to a distribution κ N on {1,2,…,N} K . Our main results are that, under appropriate conditions on κ N , the system exhibits threshold behavior at s ∗∈[0,1], where s ∗ is a function of κ N , and the marginal distribution of a randomly selected element converges to U[s ∗,1] as t→∞ and N→∞. Of this class of models, results in the literature have previously been given for special cases only, namely the ‘mean-field’ or ‘random neighbor’ Bak–Sneppen model. Our proofs avoid the heuristic arguments of some of the previous work and use Foster–Lyapunov ideas. Our results extend existing results and establish their natural, more general context. We derive some more specialized results for the particular case where K=2. One of our technical tools is a result on convergence of stationary distributions for families of uniformly ergodic Markov chains on increasing state-spaces, which may be of independent interest.