Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

A fuel cell operating between room temperature and 250 °C based on a new phosphoric acid based composite electrolyte

Lan, Rong and Xu, Xiaoxiang and Tao, Shanwen and Irvine, John T. S. (2010) A fuel cell operating between room temperature and 250 °C based on a new phosphoric acid based composite electrolyte. Journal of Power Sources, 195 (20). pp. 6983-6987. ISSN 0378-7753

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A phosphoric acid based composite material with core-shell microstructure has been developed to be used as a new electrolyte for fuel cells. A fuel cell based on this electrolyte can operate at room temperature indicating leaching of H3PO4 with liquid water is insignificant at room temperature. This will help to improve the thermal cyclability of phosphoric acid based electrolyte to make it easier for practical use. The conductivity of this H3PO4-based electrolyte is stable at 250 degrees C with addition of the hydrophilic inorganic compound BPO4 forming a core-shell microstructure which makes it possible to run a PAFC at a temperature above 200 degrees C. The core-shell microstructure retains after the fuel cell measurements. A power density of 350 mW/cm(2) for a H-2/O-2 fuel cell has been achieved at 200 degrees C. The increase in operating temperature does not have significant benefit to the performance of a H-2/O-2 fuel cell. For the first time, a composite electrolyte material for phosphoric acid fuel cells which can operate in a wide range of temperature has been evaluated but certainly further investigation is required. (C) 2010 Elsevier B.V. All rights reserved.