Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Nafion - Tris(2-2'-bipyridyl)ruthenium(II) ultrathin Langmuir - Schaefer films: redox catalysis and electrochemiluminescent properties

Bertoncello, Paolo and Dennany, Lynn and Forster, Robert J. and Unwin, Patrick R. (2007) Nafion - Tris(2-2'-bipyridyl)ruthenium(II) ultrathin Langmuir - Schaefer films: redox catalysis and electrochemiluminescent properties. Analytical Chemistry, 79 (19). pp. 7549-7553. ISSN 0003-2700

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A simple procedure to incorporate tris(2-2'-bipyridyl)ruthenium(II), [Ru(bPY)(3)](2+), into Nafion Langmuir-Schaefer (LS) films is described. Nafion LS films (tens of nanometers thick) were formed on quartz glass and indium tin oxide (ITO) directly from Nafion-[Ru(bPY)(3)](2+) Langmuir films assembled at the water-air interface. This procedure allowed the direct incorporation of [Ru(bPY)(3)](2+) into Nafion films without the need for subsequent loading. UV-vis spectroscopy confirmed the successful incorporation of [Ru(bPY)(3)](2+) within the LS films and showed that the amount of [Ru(bPY)(3)](2+) immobilized in this way scaled with film thickness. Voltammetric studies on ITO-modified electrodes confirmed the successful incorporation of [Ru(bPY)(3)](2+) and demonstrated that [Ru(bPY)(3)](2+) was retained within the ultrathin films over a long time scale. These electrodes were tested for the electrocatalytic reduction of tripropylamine. Significant catalysis was observed due to the rapid turnover of [Ru(bPY)(3)](2+/3+) between the electrode surface and outer boundary of the film, as a direct consequence of the ultrathin film dimensions. Concomitant electrochemiluminescence (ECL) was demonstrated highlighting the potential of this material for sensing applications.