Picture of offices in the City of London

Open Access research that is better understanding work in the global economy...

Strathprints makes available scholarly Open Access content by researchers in the Department of Work, Employment & Organisation based within Strathclyde Business School.

Better understanding the nature of work and labour within the globalised political economy is a focus of the 'Work, Labour & Globalisation Research Group'. This involves researching the effects of new forms of labour, its transnational character and the gendered aspects of contemporary migration. A Scottish perspective is provided by the Scottish Centre for Employment Research (SCER). But the research specialisms of the Department of Work, Employment & Organisation go beyond this to also include front-line service work, leadership, the implications of new technologies at work, regulation of employment relations and workplace innovation.

Explore the Open Access research of the Department of Work, Employment & Organisation. Or explore all of Strathclyde's Open Access research...

Nafion - Tris(2-2'-bipyridyl)ruthenium(II) ultrathin Langmuir - Schaefer films: redox catalysis and electrochemiluminescent properties

Bertoncello, Paolo and Dennany, Lynn and Forster, Robert J. and Unwin, Patrick R. (2007) Nafion - Tris(2-2'-bipyridyl)ruthenium(II) ultrathin Langmuir - Schaefer films: redox catalysis and electrochemiluminescent properties. Analytical Chemistry, 79 (19). pp. 7549-7553. ISSN 0003-2700

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A simple procedure to incorporate tris(2-2'-bipyridyl)ruthenium(II), [Ru(bPY)(3)](2+), into Nafion Langmuir-Schaefer (LS) films is described. Nafion LS films (tens of nanometers thick) were formed on quartz glass and indium tin oxide (ITO) directly from Nafion-[Ru(bPY)(3)](2+) Langmuir films assembled at the water-air interface. This procedure allowed the direct incorporation of [Ru(bPY)(3)](2+) into Nafion films without the need for subsequent loading. UV-vis spectroscopy confirmed the successful incorporation of [Ru(bPY)(3)](2+) within the LS films and showed that the amount of [Ru(bPY)(3)](2+) immobilized in this way scaled with film thickness. Voltammetric studies on ITO-modified electrodes confirmed the successful incorporation of [Ru(bPY)(3)](2+) and demonstrated that [Ru(bPY)(3)](2+) was retained within the ultrathin films over a long time scale. These electrodes were tested for the electrocatalytic reduction of tripropylamine. Significant catalysis was observed due to the rapid turnover of [Ru(bPY)(3)](2+/3+) between the electrode surface and outer boundary of the film, as a direct consequence of the ultrathin film dimensions. Concomitant electrochemiluminescence (ECL) was demonstrated highlighting the potential of this material for sensing applications.