Ligand exchange between arylcopper compounds and bis(hypersilyl)tin or bis(hypersilyl)lead: Synthesis and characterization of hypersilylcopper and a stannanediyl complex with a Cu-Sn bond
Klinkhammer, K W and Klett, J and Niemeyer, M (1999) Ligand exchange between arylcopper compounds and bis(hypersilyl)tin or bis(hypersilyl)lead: Synthesis and characterization of hypersilylcopper and a stannanediyl complex with a Cu-Sn bond. Chemistry - A European Journal, 5 (9). pp. 2531-2536. ISSN 1521-3765 (https://doi.org/10.1002/(SICI)1521-3765(19990903)5...)
Full text not available in this repository.Request a copyAbstract
Bis(hypersilyl)tin (1) and bis(hypersilyl)lead (2) [hypersilyl= Hyp = tris(trimethylsilyl)silyl] undergo ligand exchange reactions with other carbene homologues to yield heteroleptic distannenes or diplumbenes. Here we report the extension of this reaction principle to coordinatively unsaturated arylcopper(I) compounds. The primary reaction products are probably adducts with the carbene homologues as Lewis base and the arylcopper compounds as Lewis acids. This is followed by rearrangement to the adducts HypCu-E-(Hyp)Ar* (E = Sn (6) and Pb (7); Ar* = C(6)H(3)Mes(2)-2,6,) of hypersilylcopper (9) and the heteroleptic stannanediyl or plumbanediyl. The complex may be the final product or may dissociate into its component parts, free hypersilylcopper (9) and the appropriate heteroleptic carbene homologue. The colorless hypersilylcopper forms a trimer (9), in the solid state with short Cu Cu contacts (238.4-241.5 pm). All observed Cu-Si bonds are relatively long. However, shorter distances (234.9-237.4pm) alternate with longer ones (249.2 pm), such that quasi-monomeric hypersilylcopper units can be identified. The dark green complex 6 exhibits a shorter Cu-Si bond (227.3 pm), The Sn-Cu bond length was determined to be 249.9 pm. The turquoise plumbanediyl Pb(Hyp)Ar* (8) is the first strictly monomeric mixed aryl silyl derivative, even in the solid state. The steric repulsions are obviously less than in the parent homoleptic compounds because the Pb-C bond in 8 is shorter (229.0 pm) and the C-Pb-Si angle (109.2 degrees) is markedly smaller.
-
-
Item type: Article ID code: 33998 Dates: DateEventSeptember 1999PublishedSubjects: Science > Chemistry Department: Faculty of Science > Pure and Applied Chemistry Depositing user: Pure Administrator Date deposited: 18 Oct 2011 13:13 Last modified: 11 Nov 2024 09:51 URI: https://strathprints.strath.ac.uk/id/eprint/33998