Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Constructing multimetallic systems with the naphthalene-1,8-bis(thiolato) ligand

Robertson, Stuart D. and Slawin, Alexandra M. Z. and Woollins, J. Derek (2007) Constructing multimetallic systems with the naphthalene-1,8-bis(thiolato) ligand. European Journal of Inorganic Chemistry (2). pp. 247-253. ISSN 1434-1948

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Addition of 1 equiv. (Ph3P)Au(ClO4) (formed by ion exchange of Ph3PAuCl with AgClO4) to [naphthalene-1,8-bis(thiolato)]bis (triphenylphosphane) platinum results in the formation of a novel dimetallic cationic complex with a (triphenylphosphane)gold moiety attached to the sulfur of the naphthalene-1,8-bis(thiolato) ligand. NMR spectroscopic evidence suggests that this gold-containing fragment is fluxional in its bonding and X-ray crystallography confirms the asymmetric complex, which shows this gold atom attached to one of these sulfur atoms. Addition of more than 1 equiv. (Ph3P)Au-(ClO4) results in the formation of a tetrametallic sandwich complex with two bridging gold atoms between the sulfur atoms of the two PtS2C3 rings. Tri- and tetrametallic silver-containing complexes can be prepared by addition of 0.5 and 1 equiv. AgClO4 to (Ph3P)(2)Pt(S2C10H6), respectively. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007.