Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Exploiting sigma/pi coordination isomerism to prepare homologous organoalkali metal (Li, Na, K) monomers with identical ligand sets

Davidson, Matthew G. and Garcia-Vivo, Daniel and Kennedy, Alan R. and Mulvey, Robert E. and Robertson, Stuart D. (2011) Exploiting sigma/pi coordination isomerism to prepare homologous organoalkali metal (Li, Na, K) monomers with identical ligand sets. Chemistry - A European Journal, 17 (12). pp. 3364-3369. ISSN 0947-6539

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Tetraamine Me6TREN has been used as a scaffold support to provide coordinative saturation in the complexes PhCH2M center dot Me6TREN (M = Li, Na, K). The Li derivative displays a Li-C sigma interaction with a pyramidalized CH2 both in the solid state and in solution, and represents the first example of eta(4) coordination of Me6TREN to lithium. In the sodium derivative, the metal cation slips slightly towards the delocalized pi electrons whilst maintaining a partial sigma interaction with the CH2 group. For the potassium case, coordinative saturation successfully yields the first monomeric benzylpotassium complex, in which the anion binds to the metal cation exclusively through its delocalized pi system resulting in a planar CH2 group.