Resistance to cracking of a stretchable semiconductor : speed of crack propagation for varying energy release rate

Liu, S. and Lim, H. C. and Min, Qu and Federici, J. F. and Thomas, G. A. and Gleskova, H. and Wagner, S.; Corcoran, S. G. and Joo, Y. C. and Moody, N. R. and Suo, Z., eds. (2004) Resistance to cracking of a stretchable semiconductor : speed of crack propagation for varying energy release rate. In: Thin films - stresses and mechanical properties X. MRS Symposium Proceedings, 795 . Materials Research Society, USA, pp. 173-178. ISBN 1558997334

Full text not available in this repository.Request a copy

Abstract

We have measured and calculated the propagation velocity of successive cracks in a single sample of amorphous SiNx as a function of energy release rate. We have obtained the conditions for controlled, repetitive crack formation by using a Substrate of compliant plastic that survives the cracking of a thin film formed on it. We have recorded the crack velocity curves using high-speed micro-photography using dark field illumination. Under uniform, uniaxial tensile strain, the films crack in an array of essentially straight, parallel lines, if the increase of the strain density is slow. We find reasonable agreement in the comparison of theory and experiment and find a linear relationship between the initial velocity and energy release rate threshold. Consequently, in cases where the theoretical agreement with the data is reasonable, the successive cracks show velocity curves that scale with each other.

ORCID iDs

Liu, S., Lim, H. C., Min, Qu, Federici, J. F., Thomas, G. A., Gleskova, H. ORCID logoORCID: https://orcid.org/0000-0001-7195-9639 and Wagner, S.; Corcoran, S. G., Joo, Y. C., Moody, N. R. and Suo, Z.