Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

In-plane photoconductivity in amorphous silicon doping multilayers

Conde, J.P. and Silva, M. and Chu, V. and Gleskova, Helena and Vasanth, K. and Wagner, S. and Shen, D. and Popovic, P. and Grebner, S. and Schwarz, R. (1996) In-plane photoconductivity in amorphous silicon doping multilayers. Philosophical Magazine B, 74 (4). pp. 331-347. ISSN 1364-2812

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We prepared amorphous Si p-i-p-i and n-4-n-i doping multilayers to study their in-plane carrier transport and interfacial defect densities. The structures were grown using glow discharge or electron-cyclotron-resonance-enhanced chemical vapour deposition. We measured the following: composition by secondary-ion mass spectrometry; transport by dark conductivity SsGd and its thermal activation energy, by continuous-wave photoconductivity SsGph as a function of intensity and wavelength, and also by photoconductive decay; defect density by photothermal deflection spectroscopy (PDS) and the constant-photocurrent method (CPM). SsGd is dominated by the doped layers. The intensity dependence of SsGph suggests that it also is controlled by the doped layers. The fast component of the photoconductivity response time is comparable with that of the doped bulk. The PDS spectra of the multilayers are nearly identical with those of the bulk doped hydrogenated amorphous silicon. The pronounced wavelength dependence of SsGph renders CPM sensitive to the i layer plus the p-i or n-i interfacial defects. The interfacial defects are produced by dopants carried over from the doped to the i layers. Their area density in the multilayers is proportional to the number of interfaces.