Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Using EMD-FrFT filtering to mitigate high power interference in chirp tracking radars

Elgamel, Sherif and Soraghan, John (2011) Using EMD-FrFT filtering to mitigate high power interference in chirp tracking radars. IEEE Signal Processing Letters, 18 (4). 263 - 266. ISSN 1070-9908

[img] PDF
lsp_elgamel_2115239_proof_1_.pdf
Preprint

Download (1MB)

Abstract

This letter presents a new signal processing subsystem for conventional monopulse tracking radars that offers an improved solution to the problem of dealing with manmade high power interference (jamming). It is based on the hybrid use of empirical mode decomposition (EMD) and fractional Fourier transform (FrFT). EMD-FrFT filtering is carried out for complex noisy radar chirp signals to decrease the signal's noisy components. An improvement in the signal-to-noise ratio (SNR) of up to 18 dB for different target SNRs is achieved using the proposed EMD-FrFT algorithm.